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A B S T R A C T

Predicting the soil water content (SWC) is crucial to prepare for and mitigate risks during dry periods, partic
ularly before droughts. It also ensures effective water management and precise irrigation of agricultural land. 
Few studies have focused solely on the use of precipitation data to predict SWC. This study aimed to predict the 
hourly SWC for one or two days in advance at depths of 10 and 20 cm below the surface of agricultural land in 
Taichung, Taiwan, using Random Forest (RF), which has demonstrated promising results in previous studies. The 
model used hourly precipitation data from January 19, 2022, to April 18, 2023. Seven sets of strategically 
selected cumulative rainfall days were incorporated to balance the computational load and prediction accuracy. 
Based on the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error 
(RMSE) curves, a cumulative rainfall of 6–8 days was optimal for RF prediction at 10 and 20 cm SWC. The RF 
model demonstrated reasonable performance, with MAE of 0.6 % and 1.0 %, R2 values of 0.5 and 0.9, MAPE of 
25.2 % and 5.1 %, and RMSE of 2.4 % and 2.0 % for the 10 and 20 cm SWC predictions, respectively. The RF 
model performed well during dry periods but showed less accuracy during the rainy season, as indicated by the 
MAPE for the entire period, compared with the rainy season alone. This discrepancy may be due to the unusually 
high SWC in response to storm events. In conclusion, this study provides insights for improving SWC prediction 
accuracy across different seasons and practical guidelines for employing RF models in SWC prediction.

1. Introduction

Soil water content (SWC) is essential in the water cycle and signifi
cantly influences water management and agricultural production. Pre
dicting SWC is essential to prepare for and mitigate risks during dry 
periods. This is particularly important before droughts as it allows for 
careful water management and precise irrigation of crops on agricultural 
land (Rani et al., 2022).

Various factors influence the SWC in the water cycle, including 
precipitation, evapotranspiration, infiltration, runoff, and percolation. 
Water balance in a hydrological model incorporating these mechanisms 
in each layer is one method used to predict water movement in the soil. 
These parametric methods require soil and surface parameters and 
verification (Dubois et al., 2021). The models used to simulate SWC 
include WOFOST, CERES, SWAP, SWAT, SWIM, and HYDRUS. The 

choice of model depends on the simulation purpose, spatial resolution, 
model complexity, and available parameter information (Eitzinger et al., 
2004; Holsten et al., 2009; Neitsch et al., 2011; Tan et al., 2014).

Physical hydrological models may have high accuracy in SWC esti
mation but usually require significant input parameters and current 
meteo-hydrological variables. Therefore, machine learning (ML) 
methods have been applied to directly estimate SWC in cases of limited 
or missing input information (Karandish & Šimůnek, 2016; Dubois et al., 
2021). At each current step, these methods use input information such as 
evaporation, air temperature, growing degree days, crop coefficient, 
water deficit, and irrigation depth. Nie et al. (2018) demonstrated that 
meteorological factors are the most influential in SWC prediction, fol
lowed by topographic factors, which are more important than soil 
attribute factors. Their results showed better performance of Support 
Vector Machine (SVM) than Random Forest (RF) and back-propagation 
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neural networks (BPNNs). Earlier days and the current day’s SWC are 
also used to estimate future SWC (Prakash et al., 2018; Emami 
et al., 2024). Multiple linear regression (MLR) is superior to support 
vector regression and recurrent neural networks in predicting SWC for 1, 
2, and 7 days in advance using the previous SWC (Prakash et al., 2018). 
Among the tree-based ML models, random trees performed better than 
REPTree and M5P in predicting SWC the next day based on SWC from 
three days prior (Emami et al., 2024). Surface and root-zone SWC and 
climate and landscape data were used in the Extreme Gradient Boosting 
(XGBoost) machine learning algorithm to predict multilayer SWC across 
the US (Karthikeyan and Mishra, 2021). Yu et al. (2022) used gridded 
meteorological data and SWC as inputs for the proposed ResBiLSTM to 
improve the precision of SWC predictions at various depths. Input var
iables are essential for ML performance; however, data availability may 
limit the application of these methods. Land/soil temperature, which is 
usually not readily available at a small scale, is used as an input variable 
in addition to meteorological variables when using a promising decision 
tree or a Deep Learning Regression Network (DLRN) to estimate SWC 
(Cai et al., 2019; Pekel, 2020). Data fusion of the normalized difference 
vegetation index (NDVI), surface albedo, and land surface temperature 
(LST) combined with RF provides reasonable estimates of spatiotem
porally continuous soil moisture (Abowarda et al., 2021). Soil temper
ature was measured, and 13 other variables, including relative 
humidity, temperature, total radiation, and evapotranspiration, were 
used as inputs to the four ML methods by Nath et al. (2024). Convolu
tional Neural Network-Long Short-Term Memory (CNN-LSTM) out
performed CNN, LSTM, and MLR in their study.

The performances of RF, SVM, and deep learning methods such as 
neural networks are usually compared with varying results. SVM pro
vides stable and unique soil moisture estimation for one of the regional 
stations with less computational burden than artificial neural networks 
(ANN), based on a model trained using past and current soil moisture 
and atmospheric data from neighboring measurements (Gill et al., 
2006). Eight variables, including meteorological factors, potential 
evapotranspiration (ET), and SWC, were input to a CNN-LSTM to esti
mate daily SWC and ET using CNN, SVM, and RF (Alibabaei et al., 2021). 
Moreover, the parameters of the hydrological model were derived using 
the ML method. For example, Tramblay and Quintana Seguí (2022) used 
RF to estimate the maximum water-holding capacity of the Iberian 
Peninsula as input for the Soil Moisture Accounting Model (SMA) based 
on altitude, temperature, precipitation, evapotranspiration, and land 
use.

Satellite data, with limited penetration to the soil surface, are used in 
addition to local data for the current spatial estimation of SWC. RF has 
shown better results than SVM in estimating SWC based on GNSS-R Soil 
Moisture Retrieval (Jia et al., 2020). RF has also shown promising results 
in estimating soil moisture using subtractive clustering (SBC) and an 
adaptive neuro-fuzzy inference system (ANFIS) with data from dual 
polarimetric Sentinel-1 radar backscatter (Chaudhary et al., 2022). An 
unmanned aerial vehicle (UAV) is an option for resolutions higher than a 
few meters provided by satellite (Tmušić et al., 2020). Guan et al. (2022)
found that RF could predict volumetric water content and electrical 
conductivity. It performed exceptionally well when crop types and de
grees of drainage in soybean and corn fields were relatively homoge
neous and for dry soil with low variability, considering the UAV- 
acquired vegetation indices and multispectral data. Multispectral data 
based on UAV help predict the SWC 5 cm below the surface when input 
into the RF regression, which outperforms the Elastic Net, General 
Linear Model, and Robust Linear Model (Bertalan et al., 2022). RF also 
performed comparably to a process-based model in an 18 cm SWC 
nowcasting using vegetation indices from sites in the Netherlands, 
except for extremely dry or wet cases with fewer samples for learning 
(Carranza et al., 2021). In addition, visible and near-infrared spec
troscopy of fresh soil samples were used as inputs to estimate SWC. The 
least-squares SVM overperformed the cubists and two other multivariate 
regression methods (Morellos et al., 2016). Liu et al. (2023) used 32 

characteristic parameters derived from images of in-field soil samples as 
inputs for four ML models; however, this was time-consuming. Among 
these methods, Gaussian process regression (GPR) is better than partial 
least squares regression (PLSR), random forest (RF), or support vector 
machine regression (SVMR).

However, prediction is more applicable when the input datasets 
exclude the current data. Wu et al. (2007) found similar results for SVM 
and ANN considering performance, which were used to predict soil 
moisture five days later, given the average and five-day soil moisture. 
Using a small test dataset from three sites and three dates, Gorthi and 
Dou (2011) showed that the decision-tree-based model M5 performs 
comparably or even better in estimating daily surface soil moisture ac
cording to meteorological, soil, and vegetation indices than the neural 
network-based Multilayer Perceptron Network. Vyas and Bandyo
padhyay (2020) proposed a semi-supervised machine learning method 
based on a graph neural network to capture the spatiotemporal corre
lation of soil moisture at stations across Spain and the US on a daily or 
15-day scale, addressing the common problem of missing ground truth 
SWC. Prasad et al. (2018) proposed a model based on ANN to forecast 
monthly soil moisture, which outperformed other models, including RF. 
In contrast, RF and neural networks exhibited comparable performances 
of soil water potential estimations in potato fields (Dubois et al., 2021).

According to a literature review, RF is applicable to SWC prediction 
and is better than the Classification and Regression Tree (CART) for 
overfitting, accuracy, and efficiency when dealing with complex data
sets (Hastie et al., 2009; Rani et al., 2022). Moreover, RF is relatively 
easy to understand and interpret compared to other black-box models, 
such as ANN and SVM (Rani et al., 2022). However, few studies have 
used only data derived from precipitation to predict SWC. Therefore, 
this study aimed to predict the hourly SWC at 10 and 20 cm below the 
surface of agricultural land using RF based on commonly available 
hourly precipitation data. The novelty of this study is that SWC pre
diction is based merely on readily available precipitation data compared 
to other potential variables influencing SWC. This broadens the appli
cation of predicting SWC at locations with only rainfall data, enhancing 
agricultural and water management and early preparation.

2. Methodology

This study used RF to predict the hourly SWC at depths of 10 and 20 
cm below the surface of agricultural land. The target variable was SWC, 
and the input variables included precipitation-related data and daily 
hours. A previous study proposed that RF could automatically retrieve 
useful input information from complex input sets (Wu et al., 2024). 
Therefore, various precipitation-related data, including hourly precipi
tation (hourly P.) and accumulated precipitation (Accum. P.), 24-h-ago 
precipitation (24-ago P.), and no-rain hours, together with daily hours, 
imply the influence of evapotranspiration on SWC.

Considering the different possible combinations of accumulated 
precipitation, this study examined the results of different cumulative 
rainfall events per day. The importance of the different input variables is 
further discussed. To determine the model’s sensitivity to data length 
and characteristics, the optimal Accum. P. and the performance of the 
RF during the rainy season was compared with the entire period. 
Moreover, validation and prediction errors were used to justify the se
lection of Accum. P. and addressed under/overfitting issues. A flowchart 
of this process is shown in Fig. 1. The following sections describe the 
model/data and indices used to evaluate the performance of the model.

2.1. Data

This study used data from farmlands at the Taiwan Agricultural 
Research Institute (ARI) in Central Taiwan, where detailed SWC and 
precipitation data are available. The soil at a 0–30 cm depth comprised 
tiny particles of silty or sandy loam. Newly built hydrological and 
meteorological stations were located at different sites, as shown in 
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Fig. 1. Flowchart showing the influence of parameters, inputs (marked ones), and rainy seasons on soil water content (SWC) prediction by Random Forest (RF) 
analyzed in this study.

Fig. 2. Location of the study site and observation system, including hydrological measurements (SWC) and rain gauge (H&R), Data Acquisition (DAQ), and Solar 
Panel (SP). WR, Wu River; TC, Taichung; DL, Dali; WF, Wufeng.
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Fig. 2. We used an RS-102D rain gauge made by Ogasawara, and volu
metric SWC was measured using the SDI-12 from Sentek EnviroSCAN 
technology with an accuracy of ± 0.003 % Vol. An experienced team 
ensured minimum soil disturbance during EnviroSCAN installation, and 
the SWC data were verified with data measured from a nearby 2725ARL 
Jet-Fill Tensiometer (Supplementary Material).

Data from January 19, 2022, to April 18, 2023, were recorded at 10- 
minute intervals and transformed into hourly data for this study. For 
example, the average soil data recorded at 07:10, 07:20, 07:30, 07:40, 
07:50, and 08:00 h were used as the data at 08:00 h. Most of the pre
cipitation occurs from May to September, with the highest rainfall 
reaching 80 mm/h. The SWC at 10 cm depth changed more intensively 
than that at 20 cm depth, likely due to a more significant influence from 
meteorological factors. The range of SWC was 10– 47 %, as shown in 
Fig. 3.

2.2. Random Forest and input features

This study used the RF Model to predict SWC, which trains multiple 
trees to reduce the risk of overfitting in the decision tree method. RF is 
used owing to its practical advantages and strong performance, partic
ularly in scenarios with limited data where interpretability is essential 
(Rani et al., 2022). The MATLAB toolbox for Statistics and Machine 
Learning, which features a convenient Graphical User Interface and 
Integrated Development Environment, was used for the RF cross- 
validation and prediction. A Bagging algorithm, which employs the 
bootstrap resampling method, was adopted to develop several tree 

classifiers (Sutton, 2005). The tree classifier proposed by Breiman et al. 
(1984) is based on the Gini Index (Sutton, 2005). Specifically, a classifier 
is based on a subset of new samples obtained from the original training 
samples. By repeating the resampling process several times, multiple 
classifiers are ensembled and used to predict the target variable based on 
the testing data of the input features. In this study, randomly selected 
features were used to identify the feature category with a small Gini 
Index representing data purity within each category and develop the 
Classification and Regression Trees (CART), for example, the classifiers 
(Wu et al., 2024). The optimal number of training days was examined to 
ensure sufficient training data for accurate prediction. Optimal hyper
parameters, such as leaf size and learning cycle, were manually identi
fied. Considering that the prediction errors increased with increasing 
prediction lengths and that the surface 10 cm SWC responds more 
directly to precipitation than the 20 cm SWC, the prediction periods 
were set to two days for the 10 cm SWC and one day for the 20 cm SWC. 
These settings were adjustable for prediction and decision-making 
purposes.

The input variables encompass various precipitation-related data, 
including hourly rainfall and combinations of accumulated rainfall, dry 
hours, and daily hours, ensuring a comprehensive consideration of 
factors influencing SWC. Precipitation is the direct input of soil water, 
and accumulated precipitation is the residence time of soil water caused 
by previous rainfall. In contrast, dry and daily hours help capture the 
influence of evapotranspiration, a possible loss of SWC dominated by 
solar radiation and SWC. Daily hours also show the possible percolation 
loss of surface SWC after rainfall and seasonal/diurnal effects on SWC. 

Fig. 3. (a) 10 and (b) 20 cm soil water content observations and precipitation at the study site at the Agricultural Research Institute from 19 January 2022 to 18 
April 2023.
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However, the selection of the accumulated precipitation remains a 
challenge. Twelve combinations, each containing seven variables of 
Accum. P., were tested in this study, and the largest Accum. P. ranged 
from 12 to 432 h (18 days) for the 12 combinations, as shown in Fig. 4. 
The selection of the seven variables of Accum P. is subjective, and its 
influence is discussed in Section 4.1.

2.3. Model performance evaluation indices

This study used four commonly used indices to evaluate the perfor
mance of RF in predicting SWC from different perspectives to gain 
further insight into the RF results. The indices used were the mean ab
solute error (MAE), mean absolute percentage error (MAPE), root mean 
square error (RMSE), and coefficient of determination (R2).

The MAE of all the predictions was calculated as an average value to 
represent the overall performance during the prediction period. For 
specific cases, as shown in Fig. 1, the MAE of each prediction window 
(one or two days) was also presented using box plots rather than an 
average value. The MAE ranged from zero to infinity, with values 
approximately zero indicating precise predictions with minor errors. 
However, the MAE was influenced by the absolute values of the data.

The MAPE was also applied to compare the results for the entire 
period and the rainy season to assess the percentage of error rather than 
the absolute value. Lower MAPE values indicate more minor errors, but 
the bias was magnified when the absolute value was approximately zero. 
According to Lewis (1982), a MAPE within 20–50 % is a reasonable 
forecast, whereas values smaller than 10 % are highly accurate.

The validation and prediction RMSE were calculated using the 
MATLAB toolbox, which helps clarify the underfitting and overfitting 
challenges in this study. Smaller RMSE values, approximately zero, are 
favorable. The coefficient of determination (R2) shows how well the 
points can be described by the linear regression model found in this 
study, ranging from 0 to 1 for the scatter plot of SWC observations and 
predictions. The equations of MAE, MAPE, RMSE, and R2 were obtained 
from Chai and Draxler (2014) and Chicco et al. (2021).

3. Results

3.1. Influence of cumulative rainfall by days and training data length

The Accum. P. reflects the water entering the soil in the past, and its 
amount depends on the cumulative rainfall per day. The influence of the 
daily cumulative rainfall on SWC can be attributed to precipitation 
patterns, surface/soil properties, and other meteorological factors that 
dominate evapotranspiration. Extensive training data may improve RF 

performance owing to ergodicity (Bucci et al., 2020), where the model 
learns abundant materials or experiences. However, trade-offs con
cerning data collection costs and side effects such as overfitting may 
exist.

We first manually searched for optimal leaf size and learning cycle 
settings. Subsequently, various combinations of cumulative rainfall per 
day, as shown in Fig. 4, and durations of training data from 2 to 90 days 
were tested to identify the optimal training duration and Accum. P. 
variables. The leaf size represents the minimum number of data samples 
in each leaf node in a decision tree. Large leaves form a simple tree and 
may lead to underfitting, whereas small leaves with more complicated 
trees may cause overfitting. The learning cycle is the number of itera
tions for updating the weights during tree training. A small learning 
cycle may accelerate model convergence but carries the risk of 
underfitting.

The MAE of 12 cumulative rainfall per day is shown in Fig. 5, 
considering a leaf size of 10, a learning cycle of 500, and the best 
training days of 20 and 10 days for 10 and 20 cm SWC, respectively. The 
best cumulative rainfall per day was selected based on the lowest MAE, 
which was eight days for the 10 cm SWC. The curve stabilized after 6–8 
days for the 20 cm SWC when observing the trends rather than the 
detailed values. This is consistent with a previous study in Taiwan, in 
which the MAE of shallow SWC prediction was reduced when consid
ering past meteorological information for up to 192h (8 days) ago (Wu 
et al., 2024). Because the 10 cm SWC had much smaller values than the 
20 cm SWC, the average MAE values of the 10 cm SWC were also smaller 
than those of the 20 cm SWC.

Fig. 6 shows the impact of changing the training data length on the 
MAE with the optimal cumulative rainfall per day. The training duration 
was increased from 2 to 10 days incrementally and up to 90 days in 10- 
day increments. The best training durations were selected based on the 
lowest points, 20 and 10 days, for the 10 and 20 cm SWC, respectively. 
Long training durations did not necessarily result in small MAEs. This 
may be because the training data must cover approximately 1.5–3 times 
(10 or 20 days), each with 6–8 days, for the RF model to learn the SWC 
fluctuations caused by local meteo-hydrological processes. The period
icity issue was also discussed in a previous study on deep learning 
(Zhang et al., 2020). Earlier information is a minor disturbance rather 
than helpful in predicting SWC.

The SWC predictions and errors for the optimal variable parameters 
are shown in Fig. 7. The MAE of 10 and 20 cm SWC were 0.58 and 0.90, 
respectively. RF typically performed reasonably well in predicting SWC, 
with an MAE smaller than 10 %, except for extreme rainfall-induced 
SWC spikes during mid-2022. The limited learning sample of dramatic 
SWC changes during extreme rainfall events inevitably leads to 

Fig. 4. Twelve combinations of cumulative rainfall by days, each containing seven variables of accumulated precipitation (Accum. P.).
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significant prediction errors. The results for the rainy season are dis
cussed in Section 3.2.

In addition to the results based on the optimal parameters, the results 
for the worst parameters are presented in Table 1. Importantly, the 
manually identified optimal and worst parameters refer to the training 
duration and rolling/predicting periods and not the input variables 
(cumulative rainfall by days). Changing the leaf size from 10 to 1000 
and the learning cycle from 100 to 1000 yielded the same results; 
therefore, they remained constant. The R2 of the results under the 
optimal setting showed an improvement of more than 0.2 compared to 
the worst setting for both 10 and 20 cm SWC. The predicted and 
observed 10 and 20 cm SWC were also compared in scatter plots for the 
optimal and worst parameters in Figs. 8 and 9, respectively. Evidently, 
under the optimal parameters, the predictions were closer to the ob
servations based on the 1:1 line than to the worst parameters, 

highlighting the impact of the proper training duration and rolling/ 
predicting periods. For the 10 cm SWC, this effect was particularly 
noticeable in the zoomed-in 0 %–10 % range of SWC, which occurred 
most frequently (Fig. 8(b) and (d)).

3.2. SWC prediction in the rainy season

The SWC prediction during the rainy season was less accurate than 
that during the dry periods (Fig. 7). Therefore, this study further eval
uated the average prediction error during the rainy season, which lasted 
for five months, from April 16 to September 16, 2022. The most sensitive 
variable, Accum. P., was also tested to quantify the improvement in 
prediction when this variable was adjusted.

Initially, MAE was examined; however, the observed SWC influenced 
the values (Fig. 10). Therefore, MAPE, which shows the relative error, 

Fig. 5. Average mean absolute error (MAE) of 12 sets of cumulative rainfall by days for 10 and 20 cm soil water content for entire periods. The labels of horizontal 
axes indicate the longest cumulative days in every combination in Fig. 4.

Fig. 6. Average mean absolute error (MAE) of 10 and 20 cm soil water content (SWC) using Random Forest (RF) based on different training days for entire periods.
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was used to compare predictions for the entire period and rainy season 
under different Accum. P. settings (Fig. 11). Lewis (1982) stated that 
MAPE values greater than 50 % are categorized as inaccurate fore
casting. Consequently, the 10 cm SWC predicted by RF during the rainy 
season was considered unreliable compared to the other curves in 
Fig. 11. This was because of a few extreme SWC values/outliers in 

response to storm events, which were insufficient for the RF model to 
learn. Although the predicted SWCs were high, they were noticeably 
lower than the observed SWCs.

Based on the previous discussion, the curves stabilized again after 6 
to 8 days, disregarding the 1 % difference in the MAPE. These results 
were influenced by precipitation, infiltration, and evapotranspiration 

Fig. 7. (a) 10 and (b) 20 cm soil water content predictions and error time series under optimal parameter settings.
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under local weather conditions and soil properties. The performance of 
RF reached a MAPE of 5.1 %, corresponding to an MAE of 1.0 % and 6.6 
% for 20 cm SWC prediction during the entire period and the rainy 

season, respectively. For a 10 cm SWC, a MAPE of 25.2 % was a 
reasonable forecast for the entire period, corresponding to an MAE of 
0.6 %. For the small values of 10 cm SWC observed most of the time 
during the entire period, the small MAE and large MAPE demonstrated 
the effects of using different evaluation indices.

4. Discussion

4.1. Influence of input variables on predicting errors

Fig. 12 shows the MAE of each prediction window, highlighting the 
prediction errors associated with different input variables. To assess the 
impact of each variable, one type of input variable was excluded at a 
time to determine whether the MAE worsened compared to the all- 
variable case. Red crosses depict outliers. These results underscore the 

Table 1 
Optimal and worst simulation settings and performance (R2).

10 cm SWC 20 cm SWC

Optimal setting 
←→Worst setting

Training duration (days) 20 ←→90 10 ←→90
Rolling/predicting 
periods(days)

2 ←→13 2 ←→14

Optimal results 
←→Worst results

Performance (R2) 0.52 
←→0.30

0.95 
←→0.69

Unchanged setting Leaf size 10
Learning Cycle(times) 500
Cumulative rainfall by 
days (days)

8 14

Fig. 8. Scatter plot of predicted and observed soil water content at 10 cm below the surface under the (a)(b) best and (c)(d) worst parameter settings with a scale of 
(a)(c) 0 %–50 % and (b)(d) 0 %–10 %.
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importance of using Accum. P. in SWC prediction, and excluding other 
variables had minimal impact. Because the RF automatically retrieves 
valuable information, all variables influencing SWC can be used as in
puts to maintain a variety of characteristic variables (Wu et al., 2024). 
Here, Accum. P. refers to the 10th combination in Fig. 4, which consists 
of seven cumulative rainfall events per day.

This study further examined the influence of different accumulated 
rainfall inputs on MAE using the 20 cm SWC prediction as an example. 
Three cases were considered: seven sets of strategically selected cumu
lative rainfall per day, seven sets of randomly selected cumulative 
rainfall per day, and 16 sets of cumulative rainfall per day, as shown in 
Fig. 13. This was to verify the effectiveness of using seven sets of stra
tegically selected cumulative rainfall per day rather than an entire set. 
Each point in Fig. 13 represents the cumulative rainfall appended to that 
day. For example, the last red point in Fig. 13 represents the prediction 
error of the seven sets of strategically selected cumulative rainfall per 
day, including 0.25, 1.5, 3, 6, 9, 12, and 14 days. Note that the 10th 
combination in Fig. 4, up to 14 days, is used as an example instead of the 

optimal result of up to 8 days identified earlier.
As precipitation accumulates over extended periods, the prediction 

error converges because of the availability of sufficient information for 
the RF model to learn. The appended accumulated rainfall time for all 16 
sets of cumulative rainfall per day (in blue) had the highest MAE among 
the three cases when accumulated for more than four days. However, 
this case had the highest computational load. However, the seven sets of 
strategically selected cumulative rainfall per day showed comparable 
errors to the entire 16 sets of cumulative rainfall per day, making them 
more efficient in computation. Moreover, the seven strategically 
selected and seven randomly selected cumulative rainfall per day ach
ieved predictions as good as the 16 sets of cumulative rainfall per day 
when accumulated for more than 10 days. This indicates that when 
accumulated for 13 or 14 days, any of the seven selected sets of cumu
lative rainfall per day have an insignificant impact.

Fig. 9. Scatter plot of predicted and observed soil water content at 20 cm below the surface under the (a) best and (b) worst parameter settings.

Fig. 10. Average mean absolute error (MAE) of 12 sets of cumulative rainfall by days for 10 and 20 cm soil water content for the rainy season. The labels of 
horizontal axes indicate the longest cumulative days in every combination in Fig. 4.
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4.2. Discussion on Under/Overfitting

Data from the rainy season were used to discuss the underfitting and 
overfitting issues concerning the 12 combinations of cumulative rainfall 
per day. The training days, leaf size, and learning cycles were the same 
as those used for the entire period predictions. The RMSE was used for 
convenience, utilizing the MATLAB toolbox command to show the 
validation error based on the cross-validation. The validation and pre
diction errors are shown in the upper panels of Fig. 14(a) and (b), 
respectively, and the differences between them are shown in the lower 
panels.

For the 10 cm SWC, the smallest RMSE of the validation error was 
found when the cumulative rainfall per day reached eight days. Both the 
validation and prediction errors increased for more extended cumulative 
rainfall per day, which may imply that the Accum. P. earlier than eight 

days may provide abortive information for predicting future SWC. 
Furthermore, the prediction errors were slightly larger than the vali
dation errors, indicating the onset of overfitting. The differences be
tween the validation and prediction errors were plotted, and a quadratic 
curve was fitted. The minimum difference was approximately eight 
days, showing that both errors had similar values despite the two error 
curves crossing the upper panel.

For the 20 cm SWC, the validation error, prediction error, and the 
difference between them started to show convergence for the cumula
tive rainfall again by eight days, which is the 6th combination shown in 
Fig. 4. The results were consistent with those for 10 cm SWC and those 
found based on the MAPE calculated for the entire period for 10 and 20 
cm SWC, the rainy season for 20 cm SWC, and MAE for the entire period 
for both depths. The performance of the RF reached RMSE values of 2.4 
% and 2.0 % for the 10 and 20 cm SWC predictions, respectively.

Fig. 11. Average mean absolute percentage error (MAPE) of 12 sets of cumulative rainfall by days for (a) 10 and (b) 20 cm soil water content for the whole period 
and the rainy season. The labels of horizontal axes indicate the longest cumulative days in every combination in Fig. 4.
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4.3. Performances of Random Forest in estimating SWC

Carranza et al. (2021) explored the potential of machine learning 
(ML) for nowcasting root zone soil moisture (RZSM) at various spatial 

and temporal scales, primarily for agricultural and hydrological appli
cations. Their study compared ML predictions to those from process- 
based models, highlighting the flexibility of RF and fewer assumptions 
regarding the underlying soil processes. Carranza et al. (2021) used RF 

Fig. 12. Mean absolute error (MAE) of each soil water content prediction window for different input variables, where hourly Precip. is the hourly precipitation, 
Accum. Precip. is the accumulated precipitation, 24 h-ago Precip. is the 24-hour-ago precipitation.

Fig. 13. Average mean absolute error (MAE) of the seven sets of strategically selected cumulative rainfall by days, the seven sets of randomly selected cumulative 
rainfall by days, and the entire 16 sets of cumulative rainfall by days up to 14 days under different appended accumulated times of rainfall.
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Fig. 14. Validation and prediction errors (upper panel) and differences (lower panel) in the root mean square error (RMSE) of (a) 10 and (b) 20 cm soil water content 
predictions under 12 combinations of cumulative rainfall by days. The quadratic curve is also shown in the lower panel of (a) the 10 cm soil water content. The labels 
of horizontal axes represent the longest cumulative days in every combination in Fig. 4.
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for daily RZSM interpolation and extrapolation and compared the per
formance of RF with that of process-based models. They identified the 
potential of RF in data-poor areas, although they noted challenges with 
extreme condition prediction owing to infrequent sampling. The R2 of 
RF and HRDRUS 1D model predictions were 0.75–0.97 and 0.73–0.84, 
while the RMSE of the two methods were 0.98 %–6.21 % and 2.23–3.53 
%, respectively.

However, this study particularly focused on using precipitation data 
to predict SWC at two distinct depths (10 and 20 cm) in a paddy field in 
Taiwan. Our forecasting results showed an R2 and RMSE of 0.5–0.9 and 
2.0–2.4 %. Unlike Carranza et al. (2021), this study highlighted short- 
term (1–2 day) hourly predictions and focused on cumulative rainfall 
to achieve a balanced accuracy and computational efficiency perfor
mance. Our study optimized RF performance by adjusting the model 
parameters (leaf size, training duration, and cumulative rainy days). It 
thoroughly evaluated cumulative rainfall and its effect on prediction 
accuracy by examining three different cumulative rainfall cases to assess 
the computational efficiency and prediction quality. Unlike many other 
studies (Gorthi and Dou, 2011; Prasad et al., 2018; Pekel, 2020; Dubois 
et al., 2021; Wu et al., 2024) that have used a wide range of input 
variables, this study focused on precipitation-related data. Our study 
makes a novel contribution by focusing solely on precipitation data for 
SWC prediction, thereby reducing the need for other environmental and 
soil-related inputs. This approach broadens the applicability of RF to 
regions where only precipitation data are accessible, thereby making it 
an efficient tool for SWC prediction in various agricultural settings.

Bertalan et al. (2022) focused on spatial SWC heterogeneity and the 
effectiveness of UAV-based cameras combined with ML for high- 
resolution SWC mapping, whereas our study underscored a simple 
precipitation-only RF model for SWC prediction. Bertalan et al. (2022)
provided high-accuracy models useful in precision agriculture with 
data-rich imaging tools and showed that RF is the most effective ML 
model for their data type, with an R2 of 0.97. This study provides a 
practical solution tailored to data-sparse environments, enhancing sea
sonal SWC prediction and aiding irrigation planning. Both approaches 
illustrate the utility of the RF for SWC prediction, although in contexts 
that vary significantly in terms of data availability and application.

Other studies that predicted SWC based on RF were also compared 
with the results obtained in our study. Guan et al. (2022) obtained 
an MAE of approximately 1 % using a UAV-acquired vegetation index 
and multispectral data. In contrast, the prediction was slightly more 
accurate for the entire period but less accurate during the rainy season 
than theirs. The performance of image-based RF prediction may vary 
with soil types, achieving an R2 of 0.64–0.93 and RMSE of 1.98–5.01 % 
(Liu et al., 2023). The RMSE of the RF prediction based on satellite data 
was also small, reaching 2 % in the study by Jia et al. (2020) and 3.3–7.5 
% in the study by Chaudhary et al., (2022).

For studies using SWC and other meteorological variables as pre
dictors, the performance of RF and the best model CNN-LSTM achieved 
an R2 of 0.88–0.92 and 0.95–0.98, respectively (Alibabaei et al., 2021). 
Spatial SWC prediction based on meteorology, topography, and soil 
properties by Nie et al.(2016) showed R2 of up to 0.46 and 0.73 and 
RMSE values of 10.76 % and 7.52 % for RF and SVM, respectively. 
Moreover, studies forecasting SWC rather than only nowcasting were 
compared with a 1–2-day lead time in this study. Prasad et al. (2018)
showed hydrometeorological-variable-derived monthly SWC pre
dictions with an RMSE of 0.1–5.2 % and 0.1–1.9 %, MAE of 0.1–3.5 % 
and 0.1–1.4 %, MAPE of 0.8–21.98 % and 0.63–9.85 % based on RF and 
ANN-based models, respectively. Their RF performance was comparable 
to our results, showing an RMSE of 2.0–2.4 %, MAE of 0.6–6.6 %, and 
MAPE of 5.1–25.2 %. As in our study, predicting SWC one day in 
advance led to an R2 above 0.92, regardless of the method used (RF, 
SVM, or NN) (Dubois et al., 2021). In addition, their results for shallower 
soil depths had pronounced errors compared to deeper depths, owing to 
more significant water dynamics near the surface. This is similar to the 
cases of our 10 cm SWC prediction and the RF model’s performance 

during the rainy season, with sudden increases in SWC caused by 
extreme rainfall that are more difficult to predict than the progressive 
drying process. Another reason for the 10 cm SWC errors is that non- 
precipitation (NP) variables directly influence the surface more than 
the 20 cm SWC, which was not used as an input in this study. This 
argument is supported by Wu et al. (2024), who found that the summary 
contribution of NP parameters, including wind speed, solar radiation, 
humidity, pressure, and air temperature, is crucial for good SWC 
estimates.

Based on this comparison, physical-based or deep learning models 
may provide more accurate SWC nowcasting or forecasting than RF. 
Furthermore, increasing the input information favors SWC forecasting. 
However, our study showed a comparable and reasonable performance 
of RF in SWC prediction based on easily obtained accumulated rainfall 
information. The results showed that the RF performs better in cases 
where the few-hour SWC variations were within 30 %, which is essential 
for agricultural drought and water resource management (Rani et al., 
2022). This is also the case in Taiwan. Limitations in the accuracy of our 
methods exist, but this study made an innovative attempt and achieved a 
breakthrough. In the future, studies are suggested to improve parameter 
optimization using Grid Search or combining manual and automatic 
models and forecasting time to enhance accuracy and applicability. 
Future studies could explore other approaches, such as deep learning, 
when there is an abundant dataset available.

The methodology of machine learning itself is based on profound 
knowledge. However, this study focuses on the application of machine 
learning. The SWC prediction in this study is based merely on precipi
tation data, which is easily available compared to other potential vari
ables influencing SWC. RF algorithm is selected in this study for SWC 
prediction due to its practical advantages and strong performance, 
especially in scenarios with limited data where interpretability is 
important. This study has demonstrated that RF can effectively handle 
non-linear relationships without requiring complex temporal sequence 
modeling. As a preliminary result of comparing the predictive perfor
mance of different machine learning algorithms, a Long Short-Term 
Memory (LSTM) network model was tested but found its performance, 
with an MAE of 1.5814 % under exactly the same conditions as Fig. 7(b), 
was not as strong as the results achieved with RF. While LSTM networks 
are powerful tools for time-series data, they typically require large 
datasets to avoid overfitting and perform optimally. The relatively 
modest size and seasonal nature of the dataset likely limited LSTM’s 
ability to generalize effectively. The primary objective of this study is to 
develop a straightforward, accessible model for SWC prediction that 
would be applicable in data-limited scenarios. RF’s robustness and ease 
of interpretability made it an ideal choice for this purpose. However, 
future studies could explore LSTM and other deep-learning approaches 
as more extensive datasets become available. That would even allow a 
more benchmarking comparison, helping to identify the specific con
ditions under which each approach may be most advantageous for SWC 
prediction.

5. Conclusions

This study employed RF models to predict SWC at depths of 10 and 
20 cm beneath the surface of a fallow paddy field at the Taiwan ARI in 
central Taiwan from January 19, 2022, to April 18, 2023, by inputting 
various precipitation-related data, dry hours, and daily hours. The 
optimal settings for leaf size and learning cycles were determined 
manually, followed by assessments of training durations and different 
combinations of cumulative rainfall per day to refine the parameters for 
precise SWC prediction. Accum. P., identified as the most sensitive 
variable, was specifically tested to evaluate its impact on prediction 
accuracy. The findings revealed that excluding other variables has a 
minimal effect because RF algorithms inherently extract pertinent in
formation from complex input datasets. The optimal cumulative rainfall 
per day was approximately eight days for both the 10 cm and 20 cm SWC 
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predictions. The results also indicated that SWC predictions were less 
accurate during the rainy season than during the dry periods, under
scoring the challenges in SWC prediction under varying weather 
conditions.

Moreover, analyzing the effect of various accumulated rainfall inputs 
indicated that the seven strategically selected sets yielded MAE errors 
comparable to those of all 16 sets, providing computational efficiency 
and avoiding potential overfitting. In contrast, the validation and pre
diction RMSE increased with more extended cumulative rainfall by day, 
signaling the onset of overfitting. Consistent with prior findings, the 
optimal cumulative rainfall per day was approximately eight. In 
conclusion, this study demonstrated the efficacy of RF models in pre
dicting SWC solely using precipitation-related data, establishing optimal 
parameters for cumulative rainfall by day and training duration. This 
focused approach simplifies the model and achieves reasonable perfor
mance comparable to that of previous studies, enhancing its applica
bility in scenarios with limited data availability. Future studies are 
suggested to improve parameter optimization and forecasting time. 
Additionally, deep learning can be used to incorporate more available 
input data, thereby enhancing accuracy and applicability. This study 
highlights the role of accumulated precipitation as an input variable and 
provides insights for enhancing the accuracy of SWC prediction across 
different seasons. It provides practical guidelines for employing RF 
models in SWC prediction.
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